

Overview

Raccy is a multithreaded web scraping library based on selenium with
built in Object Relational Mapper (ORM). It can be used for web automation, web scraping, and
data mining. Currently the ORM feature supports only SQLite Database.
Some of the features in this library is inspired by Django ORM and Scrapy.

Requirements

	Python 3.7+

	Works on Windows, Linux, and Mac

Contents:

	Installation
	Installing the latest version

	Installing with git

	Tutorial
	Raccy Tutorial

	Diving into the code

	Architecture Overview
	UrlDownloaderWorker

	ItemUrlQueue

	CrawlerWorker

	DatabaseQueue

	DatabaseWorker

	API Documentation
	UrlDownloaderWorker API

	CrawlerWorker API

	DatabaseWorker API

	ORM API

Installation

Installing the latest version

Raccy requires python 3.7+. It is actually built with python 3.7. You can install the latest version hosted on PyPI with:

pip install raccy

Installing with git

The project is hosted at https://github.com/danielafriyie/raccy and can be installed using git:

git clone https://github.com/danielafriyie/raccy.git
cd raccy
python setup.py install

Tutorial

Raccy Tutorial

In this tutorial, we are going to scrape quotes.toscrape.com, a website that lists quotes from famous authors.
We strongly recommend that you install raccy in a virtual environment to avoid conflict with your system packages.
The source code for this tutorial is uploaded to github. You can find it from this link https://github.com/danielafriyie/raccy/blob/main/examples/quotes.py

This is the code we will use. Save it in a file called quotes.py:

from raccy import (
 model, UrlDownloaderWorker, CrawlerWorker, DatabaseWorker
)
 from selenium import webdriver
 from shutil import which

 config = model.Config()
 config.DATABASE = model.SQLiteDatabase('quotes.sqlite3')

 class Quote(model.Model):
 quote_id = model.PrimaryKeyField()
 quote = model.TextField()
 author = model.CharField(max_length=100)

 class UrlDownloader(UrlDownloaderWorker):
 start_url = 'https://quotes.toscrape.com/page/1/'
 max_url_download = 10

 def job(self):
 url = self.driver.current_url
 self.url_queue.put(url)
 self.follow(xpath="//a[contains(text(), 'Next')]", callback=self.job)

 class Crawler(CrawlerWorker):

 def parse(self, url):
 self.driver.get(url)
 quotes = self.driver.find_elements_by_xpath("//div[@class='quote']")
 for q in quotes:
 quote = q.find_element_by_xpath(".//span[@class='text']").text
 author = q.find_element_by_xpath(".//span/small").text

 data = {
 'quote': quote,
 'author': author
 }
 self.log.info(data)
 self.db_queue.put(data)

 class Db(DatabaseWorker):

 def save(self, data):
 Quote.objects.create(**data)

 def get_driver():
 driver_path = which('.\\chromedriver.exe')
 options = webdriver.ChromeOptions()
 options.add_argument('--headless')
 options.add_argument("--start-maximized")
 driver = webdriver.Chrome(executable_path=driver_path, options=options)
 return driver

 if __name__ == '__main__':
 workers = []
 urldownloader = UrlDownloader(get_driver())
 urldownloader.start()
 workers.append(urldownloader)

 for _ in range(5):
 crawler = Crawler(get_driver())
 crawler.start()
 workers.append(crawler)

 db = Db()
 db.start()
 workers.append(db)

 for worker in workers:
 worker.join()

 print('Done scraping...........')

Now all you have to do is run the code above and you are done!

Diving into the code

Models

The models are designed is such a way that, the tables are created immediately
you subclass the model.Model class without creating any object or instances or calling any create method.
The tables will be created automatically when you run your code. The idea behind this is that, in web scraping,
most of the time you’ll be inserting data into a database. So instead of writing code to define your models and
and also writing code to create them, you just define your models and start inserting data into them. Off course this behaviour
can be turned off. You can read more in the API Documentation.

In our model defined above Quote, there are just three fields:

quote_id represents the primary key field for our table.

quote this field stores the actual quote that we will scrape.

author this field stores the name of the author who created the quote.

UrlDownloader

As you can see, this class subclass the UrlDownloaderWorker class. This class is responsible
for downloading the urls of items, in this case quotes, that we will scrape. Let us take a look
at the attributes and methods defined:

	start_url: this is the initial url our UrlDownloader will request from.

	max_url_download: this defines the maximum number of urls the UrlDownloader is supposed to donwload.

	job: this method is called to handle url extraction and also puts the extracted url into ItemUrlQueue

Crawler

This class subclass CrawlerWorker class. This class is responsible for fetching web pages of the items we want to scrape.
In our case quotes. The class receives url from ItemUrlQueue, fetches the web page and scrape or extract data from it.
Let us take a look at the methods defined:

	parse: this method is called to fetch web pages and scrape or extract data from them. The url parameter is the url received from ItemUrlQueue. The data is then put into DatabaseQueue.

Db

This class subclass DatabaseWorker class. This class is responsible for storing scraped data into persistent database.
Let us take a look at some of the methods defined:

	save: this method is called to handle the process of storing scraped data into a database. The data parameter is the data received from DatabaseQueue.

Architecture Overview

UrlDownloaderWorker

Resonsible for downloading item(s) to be scraped urls and enqueue(s) them in ItemUrlQueue

ItemUrlQueue

Receives item urls from UrlDownloaderWorker and enqueues them for feeding them to CrawlerWorker

CrawlerWorker

Fetches item web pages and scrapes or extract data from them and enqueues the data in DatabaseQueue

DatabaseQueue

Receives scraped item data from CrawlerWorker(s) and enques them for feeding them to DatabaseWorker.

DatabaseWorker

Receives scraped data from DatabaseQueue and stores it in a persistent database.

API Documentation

This document specifies Raccy’s APIs.

UrlDownloaderWorker API

class UrlDownloaderWorker (driver, *args, **kwargs):

	Parameters
	
	driver - selenium webdriver object

	*args - arguments to pass to python threading.Thread class

	**kwargs - keyword arguments to to pass to python threading.Thread class

start_url - this is the initial url to make request from

url_queue - ItemUrlQueue object

mutex - python threading.Lock object

urls_scraped - total url downloaded

max_url_download - maximum number of urls to download

log - raccy.logger.logger.logger object

pre_job

This method is called before job method is called.

In case you want to do authentication or perform some action before doing the actual scraping, overwrite this method.

post_job

This method is called after job method is called, when all the scraping is done

wait (xpath, secs=5, condition=None, action=None)

Wrapper method acround selenium webdriver wait

follow (xpath=None, url=None, callback=None, *cbargs, **cbkwargs)

Follows the url or the button to click to go to the next page

job

This is where the actual scraping takes place.

close_driver

Calls driver.quit() on the selenium driver object

CrawlerWorker API

class CrawlerWorker (driver, *args, **kwargs):

	Parameters
	
	driver - selenium webdriver object

	*args - arguments to pass to python threading.Thread class

	**kwargs - keyword arguments to to pass to python threading.Thread class

url_wait_timeout - how long to wait for urls from ItemUrlQueue

url_queue - ItemUrlQueue object

db_queue - DatabaseQueue object

log - raccy.logger.logger.logger object

pre_job

This method is called before parse method is called.

In case you want to do authentication or perform some action before doing the actual scraping, overwrite this method.

post_job

This method is called after parse method is called, when all the scraping is done

wait (xpath, secs=5, condition=None, action=None)

Wrapper method acround selenium webdriver wait

parse

This is where the actual scraping takes place.

close_driver

Calls driver.quit() on the selenium driver object

DatabaseWorker API

class DatabaseWorker:

wait_timeout - how long to wait for data from DatabaseQueue

db_queue - DatabaseQueue object

log - raccy.logger.logger.logger object

pre_job

This method is called before save method is called.

post_job

This method is called after save method is called.

save

This method is called to save data to a database

ORM API

class Config:

DATABASE

DBMAPPER

class PrimaryKeyField:

class CharField (max_length=None, null=True, unique=False, default=None):

class TextField (null=True, default=None):

class IntegerField (null=True, default=None):

class FloatField (null=True, default=None):

class BooleanField (null=True, default=None):

class DateField (null=True, default=None):

class DateTimeField (null=True, default=None):

class ForeignKeyField (model, on_field):

class Model:

class Meta:

abstract = False

table_name = None

create_table = True

Index

 nav.xhtml

 Table of Contents

 		
 Overview

 		
 Installation

 		
 Installing the latest version

 		
 Installing with git

 		
 Tutorial

 		
 Raccy Tutorial

 		
 Diving into the code

 		
 Models

 		
 UrlDownloader

 		
 Crawler

 		
 Db

 		
 Architecture Overview

 		
 UrlDownloaderWorker

 		
 ItemUrlQueue

 		
 CrawlerWorker

 		
 DatabaseQueue

 		
 DatabaseWorker

 		
 API Documentation

 		
 UrlDownloaderWorker API

 		
 CrawlerWorker API

 		
 DatabaseWorker API

 		
 ORM API

_static/file.png

_static/minus.png

_static/plus.png

